Arxenix's blog

First Post

Testing ghost features & extensions:

KaTeX

$$ 1+1 $$

$$ \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } $$

$$ \displaystyle {1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots }= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. $$

Syntax Highlighting

# print squares
def main():
    for x in range(100):
        print x**2
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
fib n = round $ phi ** fromIntegral n / sq5
  where
    sq5 = sqrt 5 :: Double
    phi = (1 + sq5) / 2
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/sha.h>
 
int main()
{
  int i;
  unsigned char result[SHA_DIGEST_LENGTH];
  const char *string = "Rosetta Code";
 
  SHA1(string, strlen(string), result);
 
  for(i = 0; i < SHA_DIGEST_LENGTH; i++)
    printf("%02x%c", result[i], i < (SHA_DIGEST_LENGTH-1) ? ' ' : '\n'); // long comment long comment long comment long comment long comment long comment long comment long comment
 
  return EXIT_SUCCESS;
}
comments powered by Disqus